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Rotating Rayleigh-Bbnard convection : 
asymmetric modes and vortex states 

By FANG ZHONG-f, ROBERT E. ECKE 
AND VICTOR STEINBERGS 

Physics Division and Center for Nonlinear Studies, Los Alamos National Laboratory, 
Los Alamos, NM 87545, USA 

(Received 19 April 1992 and in revised form 12 October 1992) 

We present optical shadowgraph flow visualization and heat transport measurements 
of Rayleigh-BQnard convection with rotation about a vertical axis. The fluid, water 
with Prandtl number 6.4, is confined in a cylindrical convection cell with radius-to- 
height ratio T = 1. For dimensionless rotation rates 150 < d < 8800, the onset of 
convection occurs at critical Rayleigh numbers R , ( d )  much less than those predicted 
by linear stability analysis for a laterally infinite system and qualitatively consistent 
with finite-aspect-ratio, linear-stability calculations of Buell & Catton (1983). As in 
the calculations, the forward bifurcation at  onset is to states of localized flow near the 
lateral walls with azimuthal periodicity of 3 < m < 8. These states precess in the 
rotating frame, contrary to the assumptions of Buell & Catton (1983) but in 
quantitative agreement with recent calculations of Goldstein et al. (1992), with a 
frequency that is finite at  onset but goes to zero as Q goes to zero. At d = 2145 we 
find primary and secondary stability boundaries for states with m = 4, 5, 6, and 7. 
Further, we show that at higher Rayleigh number, there is a transition to a vortex 
state where the vortices form with the symmetry of the existing azimuthal 
periodicity of the sidewall state. Aperiodic, time-dependent heat transport begins for 
Rayleigh numbers at or slightly above the first appearance of vortices. Visualization 
of the formation and interactions of thermal vortices is presented, and the behaviour 
of the Nusselt number at high Rayleigh numbers is discussed. 

1. Introduction 
Thermal convection in a layer of fluid heated from below and rotated about a 

vertical axis is a simple model that contains the fundamental forces that control 
atmospheric and oceanic circulation. In  addition, the multiple control parameters of 
heating and rotating form an interesting system for the study of hydrodynamic 
stability, bifurcations, and turbulence. The control parameters for this problem are 
the Rayleigh number R = g a d 3 A T / v ~ ,  where g is the acceleration due gravity, 01 is the 
thermal expansion coefficient, AT is the temperature difference across the fluid layer 
of height d,  v is the kinematic viscosity, and K is the thermal diffusivity, and the 
dimensionless rotation rate d = QD d 2 / v ,  where d, is the physical angular rotation 
frequency. Some properties of convection are also influenced by the Prandtl number, 
v = v / K .  An additional constraint that plays an important role in experiments on 
rotating convection is the aspect (radius-to-height) ratio r 3 ro/d where ro is the 
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radius of a cylindrical convection cell. The rotation adds centrifugal and Coriolis 
terms to the equations of fluid motion. In  most theoretical treatments, however, the 
centrifugal force is neglected by assuming that i t  is small compared to gravity, i.e. 

Linear stability of rotating convection for a laterally infinite system was first 
considered by Chandrasekhar (1953, 1961) and by Veronis (1959). For cr > 0.68 the 
onset should be stationary and the overall effect of rotation is to stabilize the 
conduction state and to  increase the critical Rayleigh number R, for the onset of 
convection. This can be understood intuitively as a consequence of the Taylor- 
Proudman theorem which indicates that three-dimensional motions, such as formed 
by convection rolls or cells, are suppressed in rotating systems. Other theoretical 
papers describe various aspects of rotating convection, some of which seek to explain 
specific features of physical experiments on this system. We discuss the experiments 
and theoretical interpretations appropriate to the fluid used in our experiments 
which had cr = 6.4. 

An interesting complication to the linear theory is that for 52 > 52, Kuppers & 
Lortz ( 1969) showed that any two-dimensional parallel-roll convection state is 
unstable with respect to rolls oriented at an angle of about 60" relative to the initial 
rolls. Kuppers (1970) later calculated the dependence of 0, on cr, showing that 
it decreased with decreasing cr so that 52, = 22.5 for water with cr = 7 .  The 
Kuppers-Lortz (KL) transition leads to noisy time-dependent convection a t  onset 
for SZ > SZ,. On the basis of this instability one would expect such time dependence 
for our experiments in which SZ % 0,. 

Previous experimental work on rotating thermal convection was based primarily 
on heat transport data or on qualitative flow visualization. Early work using water 
(Nakagawa & Frenzen 1955) supported general trends of the linear theory. The 
detailed heat transport measurements of Rossby (1969) provided the first 
quantitative comparisons with theoretical predictions. For water the results for the 
convective onset were consistent with the linear theory for SZ < 130 but did not agree 
for larger values of D. In  particular the Nusselt number data, Nu = K / K ,  where K 
is the effective conductivity of the fluid and K,  is the thermally diRusive conductivity, 
showed that the onset of convection was progressively lowered relative to the linear 
theory as SZ increased; a t  SZ = 5000 the convective onset occurred a factor of three 
below the predicted value. Another result was that for large D the Nu data close t o  
onset were sensitive to  the aspect ratio (see figure 12 in Rossby 1969) although the 
onset value was not. Similar low onset values were obtained by Pfotenhauer, Niemela 
& Donnelly (1987) for rotating convection in helium which has c x 0.6. A number of 
possible explanations have been explored theoretically and numerically, including 
finite-amplitude instability and centrifugal effects, but most cannot account for the 
experimental observations (see Pfotenhauer et al. 1987 for a good review). An 
important consideration to note here is that to avoid centrifugal effects, which are 
proportional to 52&, the absolute rotation speed needs to be low. Therefore, to achieve 
the high dimensionless  rotation rates of interest here, one must decrease the viscosity 
v or increase the depth of the fluid. In  practice large SZ-values are obtained by 
increasing the depth of the layer, resulting in a reduction of the cell aspect ratio. Thus 
it is important to appreciate the role of finite size in understanding the phenomena 
that occur in real convection cells. 

The influence of geometry and, in particular, the aspect ratio was not considered 
in detail in early theoretical investigations of rotating convection because the 
canonical wisdom derived from non-rotating convection was that sidewalls stabilize 

Q&r, /g  < 1.  
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the conduction state and increase the critical Rayleigh number R, (Charlson & Sani 
1970; Stork & Muller 1975). Calculations by Buell & Catton (1983) showed, however, 
that for rotating, small-aspect-ratio, cylindrical convection cells, the conduction 
solution was linearly unstable with respect to azimuthally-periodic modes spatially 
localized near the outer boundary. On the basis of a careful analysis of possible effects 
of overstability, finite-amplitude instability, and centrifugal forces, Pfotenhauer et 
al. (1987) concluded that these asymmetric mode states were the probable cause of 
the much lower R,-values observed in experiments. Without visualization, however, 
this conjecture could not be tested directly. Similarly, Rossby used a visualization 
scheme (aluminium flakes) that  did not allow imaging of the flow in the region of 
interest. 

In  addition to theoretical and experimental investigations of convection for the 
linear and weakly nonlinear states near onset, there has been recent interest in 
turbulent convection with rotation. Boubnov & Golitsyn (1986, 1991) made 
measurements and some visualizations of rotating convection with an open top 
surface and qualitatively characterized vortex states and vortex interactions. 
Experimental measurements by Fernando, Chen & Boyer (1991) concentrated on 
describing the vertical velocity profile and other statistical properties of the 
turbulent state. There have also been some numerical calculations of turbulent 
rotating convection (Raasch & Etling 1992) that show striking vortex dynamics and 
coherent structures. Further, it  is interesting to consider the influence of rotation on 
the scaling of turbulent heat transport and on the probability distribution functions 
for temperature and velocity. Recent experimental (Heslot, Castaing & Libchaber 
1987 ; Wu & Libchaber 1992 ; Solomon & Gollub 1991) and theoretical (Castaing et al. 
1989 ; Shraiman & Siggia 1990) work has focused considerable effort on understanding 
the advection of temperature by the turbulent velocity field and on the ‘non- 
classical ’ scaling of Nusselt number with Rayleigh number. Classical theories 
(Malkus 1954a, b ;  Howard 1966) of convective heat transport predicted that Nu K R; 
whereas precise measurements in helium gas over many orders of magnitude in R 
(Threlfall 1975; Heslot et d .  1987) clearly show scaling with an exponent of 5. A 
recent theory (L’vov 1991) showed that conservation of entropy flux determines the 
scaling of the energy-wavevector distribution in convection, producing a different 
scaling than the k-i power law of isotropic, homogeneous turbulence. Such arguments 
suggest that  the additional terms in the inertial equations arising from rotation can 
further modify the relevant scaling behaviour. For this and other reasons relating to 
the coherence of thermal plumes, rotating convection provides a useful model system 
for fundamental studies of turbulence. 

In  this work, we present heat transport data, flow visualization, and local 
temperature measurements that characterize the convective state in a r = 1 
cylindrical container, bounded above and below by isothermal surfaces, from very 
close to onset up to the turbulent regime. Our results explain a number of long- 
standing problems in rotating convection and confirm, using flow visualization, the 
presence of azimuthally periodic modes at onset for high 52. We also demonstrate for 
the first time the existence of vortex structures in containers with rigid top and 
bottom boundaries. Our results are organized as follows. In $ 2  we describe the 
experimental apparatus. In $ 3  we present data for the convective onset and 
visualization of the azimuthally periodic states. These azimuthal modes were 
observed to precess in the rotating frame (Zhong, Ecke & Steinberg 1991 ; Ecke, 
Zhong, Knobloch 1992) and a detailed description of the precession frequency and 
mode-number dependence of the travelling wave state is presented. For values of R 
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several times larger than R, vortex structures appear in the central region of the cell 
as discussed in $4. We also present properties of vortex creation and merger in the 
turbulent regime and describe analysis of the heat transport data for a range of 0- 
and R-values. Conclusions in 3 5 include unanswered questions, opportunities for 
theoretical investigation, and some discussion about the aspect-ratio dependence of 
the phenomena we observe. 

2. Experimental apparatus 
Our experiments on rotating thermal convection were performed in an apparatus 

that consisted of a rotating thermal convection cell and stationary surrounding 
cooling bath and shadowgraph optics. This arrangement has certain limitations 
compared with a rotating table approach but proved adequate for many of our 
measurements. We discuss these aspects below, starting with the convection cell, 
proceeding to thermal measurements and ending with a description of the optical 
shadowgraph apparatus. 

The convection cell was cylindrical with radius ro = 5.006 em and height d = 
4.993 cm. It was constructed with 0.39 cm thick Plexiglas sidewalls, a 12.7 cm 
diameter, 0.32 cm thick sapphire top plate, and a 0.64 cm thick hard-nickel-plated 
copper bottom boundary, figure 1. The top plate was maintained at fixed temperature 
Top = 23.8 "C with stability k0.25 mK r.m.s. by water flow that was evenly 
distributed by a set of jets and channels (Meyer 1988). A set of thermistors placed 
around the edge of the top plate measured an average top-plate temperature, Top. 
The bottom plate was heated with a fixed heat current provided by a 90 51, spatially 
distributed film heater. Its temperature was measured by a thermistor embedded 
in the centre and a t  the vertical midplane of the plate. Closed-cell foam insulation 
surrounded the sidewalls and the bottom plate to prevent radiation and 
conduction/convection heat loss to the outer can. The outer can was stainless steel 
and was maintained in the feedback temperature bath to about the same limits as the 
top plate. The electrical leads were thermally anchored on the bottom of the can and 
then passed through a rotating slip-ring connector located on the drive shaft that 
provided rotation to the can/cell unit. Power applied to the film heater was measured 
by sensing the voltage across the heater and by separately determining the heater 
current by measuring the voltage across a calibrated, temperature-controlled 
reference resistor. 

Heat transport in thermal convection is typically reported in terms of the Nusselt 
number Nu. I n  the conduction state Nu = 1 and in the convecting state Nu > 1. In  
experiments heat is also conducted across the temperature difference AT through the 
sidewalls and along other parasitic heat paths which we call background. Assuming 
that the conductance of the water is given (International Critical Tables 1930), the 
contribution from this background conductivity is accounted for in the calculation 
for Nu so that only the fluid portions remain. The precision of the Nusselt number 
measurements is a function of SZ since ATc (AT a t  the onset of convection) varies from 
about 0.07 K at SZ = 2145 to less than 1 mK for the non-rotating case. Our stability 
in top-plate temperature of about 0.2 mK yields 0.3% precision for D = 2145 but 
50% a t  D = 0. Thus we could not reliably determine A K  for 0 < 100. Although the 
absolute stability of the heat transport measurements was limited by long-term 
stability of the top-plate temperature, the short-term temperature fluctuations in 
the bottom plate were only 0.02 mK r.m.s. This allowed us to determine very small- 
amplitude time dependence that develops as AT is increased. 
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FIGURE 1. Illustration of the Rayleigh-Benard convection cell. 

Rotation was provided by a stepping motor that drove a flexible belt attached to 
the shaft, A gear assembly allowed the motor to operate at reasonably high 
frequency so as to avoid the jitter associated with digital stepping motors. In 
addition, microstepping reduced this effect so that i t  was not a factor in the rotation. 
Rotation frequencies were in the range 0.01 to 0.5 Hz with the speed determined to 
be steady to &O.OOOl Hz. Early in the experiment the stepping motor was driven by 
a separate controller board, whereas later a module was driven directly from a 
frequency generator in the computer thereby allowing for programmed control of the 
rotation speed. 

Flow visualization was achieved using optical shadowgraph visualization of the 
temperature field. Recent enhancements of this standard technique including digital 
image processing have made it a powerful tool for studying the convective 
instability. Until this work, however, optical shadowgraph visualization has been 
used almost exclusively (for an exception see Busse 1981) for convection in thin fluid 
layers, 1-5 mm. We have used the technique to study patterns and vortex structures 
in deep cells of water where d = 5 cm. The sensitivity of the shadowgraph method is 
lower for deep layers and therefore the distance from onset that a pattern can be 
detected is substantially greater than for thin layers. Whereas it has become 
straightforward to detect patterns in thin layers to within better than 0.2 % of onset, 
our visualization is limited to about 30% above onset. This is adequate for our 
purposes and is much better than visualization with dye or aluminium flakes. We use 
the afocal shadowgraph arrangement (Croquette 1986 ; Kolodner & Williams 1990) 
and a CCD video camera, figure 2, t o  obtain images of the flow. As a consequence of 
the rotation of the convection cell and the stationary structure of the shadowgraph 
optics and video camera, we captured a single frame each full revolution of the cell. 
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PICURE 2 .  Illuvtration of shadowgraph visualizat,ion optics 

This was accomplished by strobing the digitizer with a signal from a shaft encoder. 
The evolution times for the convective states were sufficiently long that this was not 
a problem except for the most dynamic states in the turbulent regime. 

Several comments should be made about the evaluation of fluid parameters used 
in the analysis of the results presented. Because a constant heat current was applied 
to the bottom plate, its temperature was time dependent for time-dependent heat 
transport. Rayleigh numbers were therefore evaluated as a time average over AT(t). 
Second, the top-plate temperature was fixed and thus Tbot increased monotonically 
with increased heat current. This resulted in an increasing mean cell temperature. 
Most fluid parameters were evaluated a t  the mean cell temperature for a particular 
heat current, the exceptions being D and n. 52 was calculated from the fixed angular 
frequency 52, using v(T) evaluated at the mean temperature a t  onset. Because v for 
water is a rather strongly decreasing function of T the values for 52 will be slightly 
higher above onset. The deviation arising from this is less than 1 % for all data for 
which e < 10. At the highest values of R z lo7 this correction can be as large as 10 %. 
The Prandtl number was ~7 = 6.4 evaluated for Tbot = 23.8 "C. 

One final feature was added to the convection cell to help resolve questions about 
the time dependence of the onset states. Two high-sensitivity thermistors were 
embedded in the sidewall at  the midplane. These local sensors were used to  measure 
time-dependent convection and to detect any convective structures travelling in the 
azimuthal direction. We describe them in more detail below after we have discussed 
the onset modes. 

3. Convective onset and azimuthal modes 
The onset of convection in the r= 1 cylindrical cell used in this study was 

determined by measurement of the heat transport. In figure 3, the Nusselt number 
is shown for 52 = 2145 as a function of a reduced bifurcation parameter E = 
(R-R , (Q) ) /R , (D) .  The onset is a forward bifurcation a t  R, (e = 0) and there are 
several different branches above onset which are reproducible and correspond to 
states with different azimuthal wavenumber as discussed below. The values of R, 
determined from a series of such measurements a t  numerous 52-values define the 
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FIGURE 3. Nusselt numbers 11s. E at D = 2145 for states starting at high E with mode number 4 (IJ), 
5 (+), 6 (a), and 7 (A). The transition to noisy time dependence for mode 5 is indicated by a 
vertical arrow a t  et = 2.81. 
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FIGURE 4. Stability diagram in R vs. SZ parameter space. Solid line shows the prediction of linear 
stability calculations for the laterally infinite system and dashed line is linear analysis for 
asymmetric states in an r = 1 cylindrical container with insulating sidewall boundary conditions 
and for CT = 6.7 (after Goldstein et al. 1993). Data show the convective onset (a) and the onset of 
noisy time dependence (0). For comparison the onset data ( + )  of Rossby (1969) and calculations 
(A) for axisymmetric states (Homsy 85 Hudson 1972) are shown. 

experimental marginal stability curve. Rotation is predicted to suppress the onset of 
convection, pushing R, above its non-rotating value. In figure 4, the marginal 
stability curve for a laterally infinite system is shown in the parameter space of R and 
SZ (Chandrasekhar 1961). Our results for the onset fall uniformly below those 
predictions but in good agreement with the data of Rossby (1969) for convection in 
water. This shift arises from the finite size geometry of the convection cell and agrees 
qualitatively (but not quantitatively, see below) with linear calculations of Buell & 
Catton (1983). Buell & Catton showed that modes localized near the outer boundary 
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FIGURE 5. Numerical calculation of vertical velocity profile at the vertical mid-plane for an 
m = 5 azimuthal linear state. Courtesy of Rick Goldstein. 

and having azimuthal periodicity were more unstable at  lower R than was the 
axisymmetric mode associated with the solution for the laterally infinite system 
calculated by Homsy & Hudson (1972). The onset values vary dramatically with 
sidewall boundary conditions since a conducting boundary tends to oppose the 
development of temperature gradients along the wall. The structure of these 
azimuthal states is shown in figure 5 for the midplane vertical velocity field of a 5- 
fold periodic state from a linear calculation using freefree top/bottom boundary 
conditions and rigid insulating sidewall boundary conditions by Goldstein et al, 
(1993). Experimental verification of these sidewall structures is shown in figure 6 for 
states with 4-, 5-, 6-, and 7-fold periodicity at i2 = 2145. The data are digitally 
enhanced optical shadowgraph images where the darker shading indicates hotter, 
less dense fluid and the lighter shading is for the colder, more dense fluid. Slow 
ramping from the conduction state to the convection state yields m = 5. We therefore 
conclude that the critical mode for SZ = 2145 is m, = 5. The other states are produced 
by different history-dependent procedures including fast ramping or sudden jumps 
to high evalues. The states of m = 4, 5, 6 are stable in some band above onset 
whereas the m = 7 state is only metastable, existing for up to several vertical thermal 
diffusion times (7, = d2/K = 1.7 x lo4 s ) .  These data are consistent with the standard 
description of a stable band of wavenumbers in parallel roll convection. Also 
consistent with this picture is that the heat transport does not vary much with mode 
number. A detailed study of this issue in an aspect-ratio-2.5 convection cell shows 
excellent agreement with a complex Ginzburg-Landau amplitude equation de- 
scription (Li & Ecke 1993). In the next section, we discuss the stability of the 
different modes relative to the conduction state and to the secondary states at  
higher R . 

An interesting property of these azimuthally periodic states is that they propagate 
in the rotating frame, always in a direction opposite to the rotation direction. Such 
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FIGURE 6. Shadowgraph images for 52 = 2145 showing localized wall states with azimuthal m-fold 
periodicity: (a )  m = 4, E = 1.05; ( b )  rn = 5 ,  e = 0.84; ( c )  m = 6, E = 0.80; (d )  m = 7 ,  E = 0.66. 

behaviour was not expected and in fact the linear stability calculations of Buell & 
Catton (1983) assumed a stationary bifurcation. Relaxing that constraint, Goldstein 
et al. (1993) have recently shown that the solutions have a complex part and that the 
calculated precession frequencies are in good agreement with the experimental 
values. Their calculated critical onset values R,(Q) are also quite close to the 
experimental data, figure 4, whereas the results of Buell & Catton (1983) do not agree 
quantitatively with our data. In figure 7, the precession is illustrated in a spacetime 
plot of the azimuthal intensity determined from images such as in figure 6. The 
shadowgraph intensity was taken near the outer sidewall at O.9r0 over a radial band 
with 6r = 0.08r0. For E < 2.80 the precession was constant, figure 7(a ) ,  whereas for 
higher E modulation of the precession speed was observed, figure 7 ( b ) .  

The slope of the curve in these plots measures the phase velocity up of an azimuthal 
travelling wave of the form T(r,  9, t )  = f ( r )  exp [i(m+--o; t ) ]  where or is the 
precession frequency of the mth mode and the phase velocity is given by w;/m. In  
figure 8, we plot wp (dropping the explicit dependence on m) obtained from up” m; the 
frequency appears to asymptote to a finite value at  onset although the data only 
extend down to about E = 0.3. To expand this range we used two thermistors 
imbedded in the sidewall at  the midplane, see figure 9, and oriented at about 27~113 
radians from each other. As the wave propagated past the probes, the frequency was 
determined from a time series of either sensor and the mode number was obtained 
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FIGURE 7. Spacetime plots of the precession of the azimuthal state showing the radially averaged 
(&r/ro = 0.08) angular shadowgraph intensity a t  r = 0 . 9 ~ ~  and for several values of E :  (a)  uniform 
precession, m = 5 ,  E = 2.80, ( b )  modulated precession, rn = 5, E = 3.24. (c) transition from m = 5 to 
m = 4 via a space-time dislocation, E = 3.69. 

from the phase difference between the two signals. Using these probes we measured 
the amplitude, frequency, and mode number of the travelling wave down to E = 0.01. 
The amplitude varies like the square root of E ,  consistent with a Hopf bifurcation, 
figure 10(a), and the Nusselt number is linear in E ,  figure 10(b). The frequency varies 
linearly with e with a finite intercept q, a t  onset, figure lO(c). This is different from 
the commonly observed Hopf bifurcation with 0 2  symmetry in which travelling 
waves in both directions are allowed. One can describe it, however, as a Hopf 
bifurcation arising when rotation breaks the reflection symmetry of the azimuthal 
mode (Ecke et ul. 1992). This theory predicts that  w,, should vary linearly with Q for 
small D and our measurements are consistent with that prediction and in 
quantitative agreement with the linear calculations of Goldstein et al. (1993), see 
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FIGURE 8. Azimuthal precession frequency wp vs. B for Q = 2145 for different modes: rn = 4 (a), 
m = 5 (+), rn = 6 (e), and m = 7 (A). Arrows indicate transitions between different modes. 
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FIGURE 9. Schematic illustration of convection cell showing local temperature sensors located at 
the midplane. The physical angular separation of the probes is 2rr/13 radians. 

figure lO(d). Recent measurements (Li & Ecke 1993) have verified this conjecture for 
SZ > 20 in an aspect-ratio-2.5 convection cell. The data for R,, q,, and m, a t  r= 1 
are tabulated in table 1.  

The precession frequency depends only weakly on the mode number m when e 6 
1.5 for D = 2145. For higher c ,  however, large variations ofw, with m are seen, figure 
8. In  addition, transitions occur between states with different m. An example of a 
transition from an m = 5 state to an m = 4 state is shown in figure 7(c) where it 
appears as a space-time dislocation. These transitions define secondary stability 
boundaries in the parameter space of azimuthal wavenumber and c .  These secondary 
instabilities are coincident with the convection pattern filling the entire cell, as 
opposed to being localized near the boundary, and with a change in slope of the 
Nusselt number curve. In the next section we describe the evolution of the centre- 
filling processes, the formation of thermal vortices, and the development of turbulent 
flow. 
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FIGURE 10. Plot of (a) t,he amplitude, (b)  Nusselt number, and (c)  frequency wP wa. E close to onset. 
Solid curves are linear least-squares fits to  the data. The linear dependence of the frequency and 
Nusselt number and the square-root dependence of the amplitude indicate a Hopf bifurcation. The 
B = 0 intercept of wp is denoted wo and is shown vs. SZ in (d) .  The behaviour of wo is consistent with 
a linear relationship for Q < 100. The linear calculation of Goldstein et al. (1993) for the calculated 
critical mode number is shown (solid curve) for comparison. 

RC 
(lo4) wo m, 

143 1.294 14.45 3 
296 2.097 22.4 4 
572 4.273 30.3 4 

1147 9.491 36.4 4, 5 
2145 15.48 41.8 5 
4274 34.68 46.7 5 

TABLE 1. Values of Q, R,, o,,, and m, 

4. Vortex states, heat transport, and turbulence 
4.1. X e c d a r y  instabilities 

For R,ayleigh numbers several times the onset value the convective flow becomes 
more complex, both in space and in time. The quasi-one-dimensional azimuthal wave 
that is localized near the boundary for small e spreads into the cell as spiral arms. At 
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FIGURE 11. Shadowgraph images for 52 = 2145 showing m-fold symmetric patterns: (a) m = 4, 
E = 2.61; (b )  m = 5 ,  E = 2.59; ( c )  m = 6, F = 2.74; (d )  m = 7, E = 2.56. 

the end of each arm a vortex forms as the cell fills completely so that a regular array 
of these vortices is present with the m-fold symmetry of the wall state, see figure 11.  
At about the same €-value, other signs that convection has been established 
throughout the cell are observed. In the heat transport measurements there is a 
distinct break in slope for E FZ 2.8, figure 3. Close to this parameter value the heat 
transport develops noisy time dependence as shown in figure 12 for different modes 
at  SZ = 2145. These secondary instability values RCo are plotted in figure 4 and fall 
close to the linear stability curve for a laterally infinite system. It was not clear from 
these data whether this was a coincidence or indicative of ghosts of the axisymmetric 
or cell-filling states that are linearly unstable close to these parameter values. Recent 
investigation of this point in a cell with r = 2.5 show that this secondary instability 
is an indication of the linear instability of the inner regions of the cell where the 
sidewall-state amplitude is small and that the noisy time dependence arises from the 
KL instability (Li & Ecke 1993). We thus believe that the noisy time dependence in 
this more restricted geometry is a result of a finite-size KL transition. Also, the 
rotation is causing a vortex-like circulation of the flow for the centre-filling states so 
that we sometimes refer to this state as tthe vortex state. 

The transitions between different mode-number states, the modulation of the 
precession frequency of the sidewall states, the appearance of aperiodic time- 
dependent heat transport, and the distinct change in slope in the Nusselt number 
curves indicate regions of stability for the states with different m. In figure 13, these 
primary and secondary instability boundaries are indicated for S2 = 2145 in the 
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FIGURE 12. RMS temperature fluctuations ST,,, in the bottom plate vs. B showing the transition 
to noisy time dependence. Data for different mode numbers are shown: m = 4 (O), m = 5 (+), 
m = 6 (O) ,  and m = 7 (A). 
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FIGURE 13. Experimental stability diagram in parameter space of reduced Rayleigh number 

and azimuthal wavenumber qe for a = 2145. Solid and dashed lines are guides to the eye. 

parameter space of E and dimensionless azimuthal wavenumber, defined as qs = 
m(d/r,) = m / r ,  where m is the periodicity of the azimuthal mode. The bottom 
boundary separates convection and conduction regions and was obtained by 
decreasing 8 from above onset while in a particular m-fold symmetric state. Thus the 
boundary is the nonlinear stability boundary for the convection state. The other 
boundaries are the transition to aperiodic time dependence, for which there is not 
much 6 variation with m, the observed transitions between states with different m 
such as illustrated in figures 7(c) and 8, and the modulation of the precession 
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FIGURE 15. Ratio of Rayleigh number for onset of time dependence R, to onset Rayleigh number 
R, for various values of Q. Numbers in brackets show the critical values of m at onset. 

frequency of the sidewall states, figure 7 ( b ) .  The slope-change boundary is not 
distinguishable from that determined by the appearance of aperiodic heat transport 
on the scale presented here. 

A partial characterization of these states for different Q-values is provided by heat 
transport data. In figure 14, we show Nu versus AT for different SZ in the range of 
control parameter close to the transition to the vortex states. From these data and 
the noisy-onset data we determine the onset values for convection, R, and for the 
vortex state, RCo. The ratio of these two values is plotted in figure 15 and shows a 
distinct change for SZ rz: 1000. This change most likely corresponds to the increase in 
the critical value of m at onset from 4 to 5, which strongly affects the primary 
bifurcation but only weakly shifts the secondary transition. 
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FIGURE 16. Shadowgraph images for 0 = 2145 showing evolution of the convective state with 
increasing E .  Mode 6 is the azimuthal mode number for states with E < 3.2 (note that while the 
critical mode number is 5, mode 6 exists over a large range 0.1 < E < 3.7). For 8 = 3.97 there has 
been a transition to a mode-5 state. (a) E = 0.8, Nu = 1.59; (b )  E = 1.58, Nu = 2.23; (6) 6 = 2.74, 
Nu=3.14; ( d )  ~ = 3 . 1 9 , N u = 3 . 5 9 ;  (e) s=3.97, Nu=4.30; (f) E =  15.SO,Nu= 11.76. 

4.2. Vortex interactions 

Further increases of R produce increasingly complex states where the patterns are 
constantly changing. In figure 16, a series of shadowgraph images for SZ = 2145 a t  
successively larger E in the range 0.80 < E < 12, shows a progressive evolution of 
behaviour. At the highest E = 15.80 (R = 2.6 x lo6) the flow is turbulent and the 
remaining thermal vortices undergo significant interactions resulting in complex 
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FIGURE 17. Time evolution of vortices from weakly convecting state with azimuthal sidewall state 
with m = 5 for L? = 2145 and R x 7 x lo6. The time separation between images is about 157, (7, = 
6.4 s )  and the sequence of images proceeds from upper left to lower right. 

dynamics. A particularly interesting way to study the evolution and interactions of 
vortices is to investigate transients that  arise from suddenly applying additional heat 
to a conducting or weakly convecting state. Such a transient sequence is shown in 
figure 17. The timescale for these dynamics is rapid on the thermal diffusion 
timescale 7, = 1.7 x lo4 s and thus we present them in terms of a turbulent time 
rR = r,/Ri. During the initial stages, vortices formed rapidly but were constrained 
by the symmetry of the sidewall state ; there is 5-fold symmetry to the vortex pattern 
for figures 17(a)-17(d). After the maximum density of vortices was reached, see 
figure 17(d), the number decreased until a steady state was attained. The steady 
state is a dynamical balance between nucleation events occurring a t  or near the 
sidewalls and annihilations (mergings) of vortices that take place in the interior 
region of the convection cell. An example of this vortex merging is shown in figure 
18 and a quantitative characterization of the merging is shown in figure 19(a, b ) ,  
where the separation &/a, (a,, is the size of a single vortex and is about d / 5 )  and the 
relative angular orientation of the two vortices are plotted versus time. There 
appears to be two distinct regimes of behaviour, the first being a uniform rotation of 
the two vortices without noticeable decrease in separation. The circulation then 
increases suddenly and the two vortices quickly approach each other to form a single 
vortex. Another example from the same transient sequence, is shown in figure 
19(c, d ) .  Finally, in figure 20, the interactions and merging of three vortices is 
illustrated. Two of the vortices merge first and then spiral around the third which 
remains relatively immobile during this process. There has been significant work on 
two-dimensional vortex merger (see for example Melander, Zabusky & McWilljams, 
1988) but none that we are aware of on thermal vortices. 
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FIGURE 18. Time evolution of vortices showing vortex merging for !2 = 2145 and R = 7 x lo6. The 
time separation between images is about 3~~ (7, = 6.4 s) and the ttime sequence proceeds from 
upper left to lower right. 

4.3. Turbulent heat transport 
Finally, we discuss the scaling of the heat transport with Rayleigh number in the 
turbulent regime. Recent experimental progress on turbulent convection has 
distinguished a transition between ' soft' and ' hard ' turbulence that shows up in the 
probability distribution function (PDF) of temperature fluctuations in the middle 
of the convection cell (Heslot et a,?. 1987). For small-aspect-ratio convection cells 
(T< l),  this transition from Gaussian to exponential PDFs is accompanied by a 
change in the exponent of the power-law scaling of the heat transport, Nu = ARP. 
For convection in helium with Prandtl number about 0.7 the exponent p takes the 
classical value (Malkus 1954a, b ;  Howard 1966) off in the soft regime for R < 2 x lo6 
whereas for hard turbulence with R > 2 x lo', /3 = 5 = 0.286. Two theories have been 
suggested to explain the $ exponent of the heat transport scaling at high Rayleigh 
number. Castaing et al. (1989) introduced the concept of a mixing zone that is much 
larger than the thermal boundary layer but still significantly smaller than the cell 
height. In this model heat from the boundary layer is effectively transferred through 
the mixing zone by temperature and velocity fluctuations in the form of eruptions of 
thermal plumes from the boundary layer. The difference between the soft and hard 
turbulence regimes arises from the different spatial and temporal behaviour of these 
coherent structures. In the soft regime they extend over large distances and appear 
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FIGURE 19. (a )  Separation &/a, and ( b )  angular orientation 0 vus. time for two merging vortices, 
where a, is the characteristic size of a single vortex. Data are the same as for figure 18. Another 
example of merging vortices is shown in (c, d ) :  ( c )  &/a, and (d )  vs. time. Straight line fits of 0 in 
( b )  and (d) indicate uniform rotation. 

as rare but strong eruptions whereas in the hard regime they break into pieces, 
appearing more frequently and with more regularity in both space and time. These 
different characteristics then imply the Gaussian or exponential PDFs of the soft or 
hard turbulence regimes. The second theory, of Shraiman & Siggia (1990), is based 
on the physical assumption that the heat transport is controlled by a thermal 
boundary layer that is created by the shear flow near the walls. This assumption is 
valid when the entire temperature drop occurs within the viscous sublayer of the 
turbulent boundary layer and is therefore dependent on the ratio of viscous to 
thermal lengthscales. The implication of this is that the p = f scaling regime will vary 
with the Prandtl number in such a manner as to extend the bottom limit of hard- 
turbulence scaling to higher R for higher CT. 

Several of the concepts that distinguish the two theoretical models have recently 
been tested by Solomon & Gollub (1990). They showed that although the form of the 
thermal plumes was strongly modified by externally induced horizontal shear in the 
boundary layer, no significant increase in Nu was observed. In  addition, they 
investigated the role of induced recirculating flows (Solomon & Gollub 1991) and 
found that additional mixing produced by these flows led to a large enhancement of 
Nu (up to 70%) .  These experiments favour the model of Shraiman & Siggia which 
makes no specific assumptions about the structure of thermal plumes or about the 
stability of the boundary layer. 

6 FLM 249 
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FIGURE 20. (a) Trajectories of three vortices labelled a, b, c with separations r l ,  T ~ ,  and r3 as 
indicated in the figure; (b)  separations &/a, of the three vortices; (6) angular orientation 8 of three 
vortices undergoing merger. Data are from the same sequence as in figure 18. 

The influence of rotation on the general problem of turbulent convection has not 
been considered in the same framework as discussed above. From that perspective 
rotation adds a number of interesting features that might prove useful in 
understanding the role of thermal plumes and recirculating flows in turbulent 
convection. The main advantage of rotation is that it provides an additional control 
parameter 0 that acts to generate a natural vortical motion in the fluid as opposed 
to the externally induced motions used by Solomon & Gollub (1990, 1991). Rotation 
can also contribute an additional body force through centrifugal acceleration which 
might modify the scaling behaviour of the heat transport. A recent theory of L'vov 
(1991) that considers turbulent scaling as being determined by the conserved 
quantities in the problem might be extended to include the effects of rotation. Simple 
considerations suggest that the Coriolis force will not change the exponent of the 
scaling because it does not contribute to the energy in the Navier-Stokes equation 
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A a R-Range r Reference 

0.131 0.300 (5) 3 x 104-2 x 106 1.65 (c) Rossby (1969) 
0.183 0.278 3 x 10~-108 1.M.O (C) Chu & Goldstein (1973) 
0.145 0.29 3 x 107-4 x los 3.5-14 (S) Tanaka & Miyata (1980) 
0.129 0.299 (3) 105-2 x 107 1.0 (c) This work 
0.137 0.275 (7) 2 x 108-2 x 10' 0.71, 1.6 (S) Solomon t Gollub (1991) 

TABLE 2. Values of heat transport scaling parameters: A,  a, R-Range, r (C = cylindrical, 
S = square with r = L/d) ,  and reference 

(it should substantially modify the prefactor). On the other hand the centrifugal 
terms will change the energy balance and therefore should influence the scaling 
exponent directly. In this experiment centrifugal effects were minimized and should 
play no role in the exponent but in future work sufficiently strong centrifugal 
accelerations should be applied to test the theory. 

In  this work we show data and shadowgraph images that are suggestive of a 
number of the features expected from the theoretical descriptions and that set the 
stage for more thorough studies that will include measurements of PDFs using local 
temperature probes, In particular, we first consider the influence of rotation on the 
dependence of Nu on R for large values of R, see figure 21. The non-rotating data scale 
like Nu = ARP with an exponent /3 = 0.299 & 0.003 (the errors reflect statistical errors 
in the least-squares fit and do not include possible systematic errors) and a prefactor 
A = 0.129. The scaling exponent /3 has been measured in water by a number of 
investigators. Experiments by Rossby (1969), Chu & Goldstein (1973), Tanaka & 
Miyata (1980), and Solomon & Gollub (1991) yielded values in the range 0.129 < 
A < 0.18 and 0.275 < /3 < 0.300. Specific values are listed in table 2. In general the 
values for the scaling exponent fall below the classical 3 value but slightly above the 
5 scaling found in helium experiments (Wu & Libchaber 1992). This may be due to 
the limited range of R used to determine p or because, for the higher Prandtl number 

6-2 
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FIGURE 22. Images for Q = 2145 corresponding to heat transport data in figure 21 at various 
values of R :  (a)  2.5 x 10'; (a) 3.7 X 10'; (c) 8.8 x lo6; (d) 2.0 x lo7. 

of water, the scaling range may be pushed to  higher R as suggested by Shraiman & 
Siggia (1990). In  future work we will extend the range of R to  better test the scaling 
law. 

Next we consider the influence of rotation on the scaling of the Nusselt number. 
Rotation suppresses the onset of convection but Nu rises rapidly and actually 
surpasses the non-rotating heat transport value, figure 21. Asymptotically, the heat 
transport for rotating flows appears to approach the non-rotating curve from above, 
either merging with the non-rotating data for large R or providing a uniform shift to 
higher Nu. We expect that a uniform shift is most likely as the vortices provide 
additional recirculating flow and possible Eckmann suction, either of which could 
disrupt the boundary layer thereby enhancing the heat transport. I n  this context it 
is interesting to consider images of convection a t  different points along the Nusselt 
number curve for R = 2145. Each image in figure 16 can be associated with Nu data 
in figure 21. Further, a series of four shadowgraph images shown in figure 22 and 
labelled in figure 21 indicate how rotation imposes a coherence on the thermal 
structures even at quite high Rayleigh numbers. A final point about the Nusselt 
scaling with rotation is that  the dimensionless rotation rate does vary substantially 
(10-15 YO) owing to  our method of fixed Top and fixed dimensional rotation rate, R,. 
Such variations could have a quantitative influence on the results, although the 
qualitative features should remain. Therefore, no systematic effort to extract 
scalings for the rotating data has been made. Future measurements will correct this 
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effect by using constant-AT conditions and correcting SZ, a t  each point so that SZ 
remains constant. A larger range in R will also be studied so as to investigate the 
asymptotic behaviour of the heat transport scaling. 

5. Conclusions 
We have investigated the onset and evolution of states in a unity-aspect-ratio 

convection cell, acted upon by rotation-induced Coriolis forces. The onset modes are 
shown to be azimuthally periodic and localized near the lateral boundary. The results 
are in qualitative agreement with linear calculations of Buell & Catton (1983). In  
addition the m-fold periodic states are observed to precess in the rotating frame, 
consistent with a theory based on bifurcations with symmetry. Specifically, rotation 
breaks weakly the reflection symmetry of the azimuthally periodic states and induces 
a precession whose frequency increases from zero as D increases from zero. At finite 
D the dependence of amplitude and frequency for the travelling wave state vary as 
one would expect for a Hopf bifurcation. This state is thus a one-dimensional 
travelling wave and interesting instabilities occur as R is increased. The predict' t ions 
of linear theory (Goldstein et al. 1993) for the precession frequency and for the onset 
Rayleigh numbers agree quite well with experimental results. Their calculations also 
predict the size (aspect ratio) dependence of these onset modes. Recent results of Li 
& Ecke (1993) show that for r = 2.5, the quantities up, R,(Q), and the dimensionless 
azimuthal wavenumber are not changed much by the aspect ratio change, also in 
agreement with theory. The stability of the azimuthal modes relative to the 
axisymmetric modes and the laterally infinite states needs further experimental 
study to resolve the role of aspect ratio in the nonlinear states at onset and on the 
Nusselt number dependence of these states. 

For higher R we have made a good survey of the nonlinear states and their 
properties. The fluid begins to convect throughout the cell and irregular dynamics 
appear. As the convective amplitude increased, localized vortices were formed. 
Vortex interactions and mergers were observed that balanced the nucleation of 
vortices at the sidewalls. At still higher R these vortices become less distinct as the 
flow becomes more turbulent. This progression to turbulence is strongly influenced 
by the rotation but the final states a t  very high R do not seem much affected (at least 
as measured in the scaling of the heat transport). More experimental measurements 
are necessary to investigate the novel features of turbulence in rotating thermal 
convection. 
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